首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29427篇
  免费   2883篇
  国内免费   2404篇
  2024年   33篇
  2023年   534篇
  2022年   450篇
  2021年   831篇
  2020年   1200篇
  2019年   1339篇
  2018年   1179篇
  2017年   1106篇
  2016年   1275篇
  2015年   1335篇
  2014年   1704篇
  2013年   2408篇
  2012年   1424篇
  2011年   1672篇
  2010年   1164篇
  2009年   1617篇
  2008年   1653篇
  2007年   1663篇
  2006年   1509篇
  2005年   1315篇
  2004年   1123篇
  2003年   1059篇
  2002年   1014篇
  2001年   800篇
  2000年   734篇
  1999年   570篇
  1998年   572篇
  1997年   481篇
  1996年   389篇
  1995年   424篇
  1994年   334篇
  1993年   282篇
  1992年   286篇
  1991年   196篇
  1990年   216篇
  1989年   175篇
  1988年   83篇
  1987年   88篇
  1986年   73篇
  1985年   59篇
  1984年   69篇
  1983年   39篇
  1982年   51篇
  1981年   34篇
  1980年   33篇
  1979年   40篇
  1978年   20篇
  1977年   15篇
  1976年   13篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
《Free radical research》2013,47(7):842-849
Abstract

The current study was intended to evaluate the hepatoprotective effect of Epicatechin (EC) against radiation-induced oxidative stress, in terms of inflammation and lipid peroxidation. Swiss albino mice were administered with EC (15 mg/kg body weight) for three consecutive days before exposing them to a single dose of 5-Gy 60Co gamma (γ) irradiation. Mice were necropsied and livers were taken for immunohistochemistry, western blot analysis and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were increased whereas the activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content and ferric reducing antioxidant power (FRAP) were diminished upon radiation exposure compared to control. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited whereas an increase in SOD, CAT, GSH and FRAP was observed in the mice treated with EC prior to irradiation. Thus, pre-treatment with EC offers protection against γ-radiation induced hepatic alterations.  相似文献   
992.
993.
Abstract

Hyperglycaemia is associated with the poor outcome after intracerebral haemorrhage (ICH). Acetazolamide (AZA), a kind of carbonic anhydrogenase (CA) inhibitor, its effectiveness in ICH had been reported. However, the connections between AZA and ICH, especially in hyperglycaemia condition had never been defined. In this study, adult Sprague–Dawley rats were administered with vehicle or streptozotocin (STZ) to render them into normoglycaemic (NG) or hyperglycaemic (HG), respectively. Collagenase was then injected into the striatum. The NG or HG ICH rats treated with vehicle control or 5?mg/kg AZA (oral gavage) underwent haemorrhagic area assessments on the 1st, 4th, and 7th day after ICH. The coverage of pericytes was examined by immunohistochemistry. Reactive oxygen species (ROS) levels were assessed in mouse astrocyte cell line treated with vehicle or 20?μmol/L of AZA in culture media according to two different glucose concentrations. AZA reduced the haematoma size, improved neurobehavioral functions, suppressed astrocytic ROS production in vitro, and preserved cerebral pericytes coverage, which are even more remarkable in HG conditions. The present study indicates that AZA may alleviate some sequelae after ICH, especially in poorer prognostic HG rats through the suppression of astrocytic ROS production.  相似文献   
994.
《Free radical research》2013,47(6-7):526-534
Abstract

Although endothelial progenitor cells (EPCs) have been used to promote revascularization after peripheral or myocardial ischemia, excess amounts of reactive oxygen species (ROS) are often involved in senescence and apoptosis of EPCs, thereby causing defective neovascularization and reduced or failed recovery. Here, we examined the cytoprotective effect of Ecklonia cava-derived antioxidant dieckol (DK) on oxidative stress-induced apoptosis in EPCs to improve EPC bioactivity for vessel repair. Although H2O2 (10 ? 3 M) increased the intracellular ROS level in EPCs, DK (10ug/ml) pretreatment suppressed the H2O2-induced ROS increase and drastically reduced the ratios of apoptotic cells. H2O2-induced ROS increased the phosphorylation of p38 MAPK and JNK; this was inhibited by DK pretreatment. H2O2 treatment increased the phosphorylation of NF-κB, which was blocked by pretreatment with SB 203580, a p38 MAPK inhibitor, or SP 600125, a JNK inhibitor. H2O2 decreased the cellular levels of Bcl-2 and c-IAPs, cellular inhibitors of apoptosis proteins, but increased caspase-3 activation. However, all these effects were inhibited by pretreatment with DK. Injection of DK-mixed EPCs (DK + EPCs) into myocardial ischemic sites in vivo induced cellular proliferation and survival of cells at the ischemic sites and, thereby, enhanced the secretion of angiogenic cytokines at the ischemic sites. These results show that DK + EPC exhibit markedly enhanced anti-apoptotic and antioxidative capabilities, unlike that shown by EPCs alone; thus, they contribute to improved repair of ischemic myocardial injury through cell survival and angiogenic cytokine production.  相似文献   
995.
Methamphetamine (METH)-induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. The aims of the present study conducted in the mouse brain repetitively treated with METH were to (1) examine the redox status using the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethylpiperidine-1-oxyl (MCP) and (2) non-invasively visualize the brain redox status with electron paramagnetic resonance (EPR) imaging. The rate of reduction of MCP was measured from a series of temporal EPR images of mouse heads, and this rate was used to construct a two-dimensional map of rate constants called a “redox map.” The obtained redox map clearly illustrated the change in redox balance in the METH-treated mouse brain that is a known result of oxidative damage. Biochemical assays also showed that the level of thiobarbituric acid-reactive substance, an index of lipid peroxidation, was increased in mouse brains by METH. The enhanced reduction in MCP observed in mouse brains was remarkably suppressed by treatment with the dopamine synthase inhibitor, α-methyl-p-tyrosine, suggesting that enhancement of the reduction reaction of MCP resulted from enzymatic reduction in the mitochondrial respiratory chain. Furthermore, magnetic resonance imaging (MRI) of METH-treated mice using a blood–brain barrier (BBB)-impermeable paramagnetic contrast agent revealed BBB dysfunction after treatment with METH for 7 days. MRI also indicated that the impaired BBB recovered after withdrawal of METH. EPR imaging and MRI are useful tools not only for following changes in the redox status and BBB dysfunction in mouse brains repeatedly administered METH, but also for tracing the drug effect after withdrawal of METH.  相似文献   
996.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   
997.
《Free radical research》2013,47(6):707-716
Abstract

Bleomycin (BLM) is an anti-cancer drug that can induce formation of reactive oxygen species (ROS). To investigate the association between up-regulation of antioxidant enzymes and coenzyme Q10 (CoQ10) in acquired BLM resistance, one BLM-resistant clone, SBLM24 clone, was selected from a human oral cancer cell line, SCC61 clone. The BLM resistance of SBLM24 clone relative to a sub-clone of SCC61b cells was confirmed by analysis of clonogenic ability and cell cycle arrest. CoQ10 levels and levels of Mn superoxide dismutase, glutathione peroxidase 1, catalase and thioredoxin reductase 1 were augmented in SBLM24 clone although there was also a mild increase in the expression of BLM hydrolase. Suppression of CoQ10 levels by 4-aminobenzoate sensitized BLM-induced cytotoxicity. The results of suppression on enhanced ROS production by BLM and the cross-resistance to hydrogen peroxide in SBLM24 clone further demonstrated the development of adaptation to oxidative stress during the formation of acquired BLM resistance.  相似文献   
998.
《Free radical research》2013,47(1):795-807
In the past decades air pollution has increased worldwide. We also gained more insight into the complex interactions between different air pollutants in the atmosphere as well as their effects on living cells and organisms. It also has been unequivocally shown by several groups in different countries that oxy radicals play an outstanding role in the interconversion of air pollutants as well as during the manifestation of toxic effects. Not only living systems are affected by air pollutants, but also inorganic systems such as buildings and sculptures. In the following overview the most important reactions occuring in the atmosphere as well as effects of oxidative gaseous compounds and particles such as diesel soot and asbestos will be discussed.  相似文献   
999.
《Free radical research》2013,47(7):814-822
Abstract

Mammalian odorant-binding proteins (OBPs) are soluble lipocalins produced in the nasal mucosa and in other epithelial tissues of several animal species, where they are supposed to serve as scavengers for small structurally unrelated hydrophobic molecules. These would include odorants and toxic aldehydes like 4-hydroxy-2-nonenal (HNE), which are end products of lipid peroxidation; therefore OBP might physiologically contribute to preserve the integrity of epithelial tissues under oxidative stress conditions by removing toxic compounds from the environment and, eventually, driving them to the appropriate degradative pathways. With the aim of developing a biological model based on a living organism for the investigation of the antioxidant properties of OBP, here we asked whether the overexpression of the protein could confer protection from chemical-induced oxidative stress in Escherichia coli. To this aim, bacteria were made to overexpress either GCC-bOBP, a redesigned monomeric mutant of bovine OBP, or its amino-terminal 6-histidine-tagged version 6H-GCC-bOBP. After inducing overexpression for 4 h, bacterial cells were diluted in fresh culture media, and their growth curves were followed in the presence of hydrogen peroxide (H2O2) and tert-Butyl hydroperoxide (tBuOOH), two reactive oxygen species whose toxicity is mainly due to lipid peroxidation, and menadione, a redox-cycling drug producing the superoxide ion. GCC-bOBP and 6H-GCC-bOBP were found to protect bacterial cells from the insulting agents H2O2 and tBuOOH but not from menadione. The obtained data led us to hypothesize that the presence of overexpressed OBP may contribute to protect bacterial cells against oxidative stress probably by sequestering toxic compounds locally produced during the first replication cycles by lipid peroxidation, before bacteria activate their appropriate enzyme-based antioxidative mechanisms.  相似文献   
1000.
《Free radical research》2013,47(9):1070-1084
Abstract

In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号